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This paper presents the first ‘exact ’ solutions to the creeping-flow equations for the 
transverse motion of a sphere of arbitrary size and position between two plane parallel 
walls. Previous solutions to this classical Stokes flow problem (Ho & Leal 1974) were 
limited to a sphere whose diameter is small compared with the distance of the closest 
approach to either boundary. The accuracy and convergence of the present method 
of solution are tested by detailed comparison with the exact bipolar co-ordinate 
solutions of Brenner (1961) for the drag on a sphere translating perpendicular to a 
single plane wall. The converged series collocation solutions obtained in the presence 
of two walls show that for the best case where the sphere is equidistant from each 
boundary the drag on the sphere predicted by Ho & Leal (1974), using a first-order 
reflexion theory, is 40 per cent below the true value when the walls are spaced two 
sphere diameters apart and is one order-of-magnitude lower at  a spacing of 1.1 
diameters. 

1. Introduction 
The slow motion of a sphere in a viscous fluid between two plane parallel walls has 

important biological and engineering applications. The theory is needed to  provide 
the hydrodynamic interaction parameter for modelling the diffusion of plasmalemma 
vesicles across endothelial cells lining the artery wall (Weinbaum & Caro 1976; 
Arminski, Weinbaum & Pfeffer 1980) and the diffusion of molecules across the inter- 
cellular space between adjacent cells. The more general theory, which includes the 
superposition of transverse and parallel motions, can be used to determine the motion 
of a particle passing through an electrostatic precipitator or the trajectory of a foreign 
particle in a lubricating bearing. Owing to the linearity of the governing differential 
equations and boundary conditions, the arbitrary planar motion of a sphere relative 
to two plane parallel walls can be separated into motions parallel and perpendicular 
to the confining boundaries. The solutions for the parallel motion are treated in part 2 
(Ganatos, Pfeffer & Weinbaum 1980). 

Despite its significance this classic low-Reynolds-number flow problem has eluded 
exact theoretical treatment for many years because of the lack of a natural co-ordinate 
system in which one could simultaneously satisfy the no-slip boundary conditions 
along the two walls and on the surface of the sphere. The existence of such a co- 
ordinate system made i t  possible for Brenner (1961) to obtain an exact series solution 

24-2 

0022-1 120/80/4507-1710 $02.00 @ 1980 Cambridge University Press 



740 P .  Ganatos, S .  Weinbaum and R. Pfefler 

for the drag on a sphere translating perpendicular to a single plane wall. However 
the method used cannot be applied when two walls are present since the solution it 
based on the limiting case of a spherical bipolar series expansion in which the radius 
of one of the spheres is taken as infinitely large. 

The only solutions currently available for the transverse motion of a sphere between 
two walls are the first-order method of reflexions results of Ho & Leal (1974) and the 
approximate analyses of Lorentz (1907) and Halow & Wills (1970) in which the con- 
tribution of each wall are simply added. The method of reflexions is an iterative series 
solution technique in which successive terms in the present application alternately 
satisfy boundary conditions on the sphere and on the confining walls. This series 
method gives accurate results using one or two reflexions only if both walls are far 
removed from the surface of the sphere. At close particle-to-wall spacings, the higher- 
order interaction effects become significant and the leading terms of the iterative 
series give a poor description of the particle-wall interactions. This behaviour causes 
the iterative series solution to converge very slowly. The study of Ho & Leal is part 
of a more general analysis in which these authors examine the effects of weak inertia 
on the lateral migration of a neutrally buoyant sphere in Couette or two-dimensional 
Poiseuille flow. The zeroth-order term of their perturbation series expansion in 
Reynolds number corresponds to the inertia-free Stokes flow problem considered in 
parts 1 and 2 of the present study. 

The combined analytical-numerical solution procedure developed for the flow 
geometry treated in this study is a modification of the collocation series solution 
technique first developed by Gluckman, Pfeffer & Weinbaum (1971) for unbounded, 
axisymmetric multispherical Stokes flow and later extended to bounded flows by 
Leichtberg, Pfeffer & Weinbaum (1976) for co-axial chains of spheres in a tube. The 
present use of the technique is the first application of the general method to mixed 
spherical and planar co-ordinate geometries. This aFplication requires that one first 
derive an expression for the disturbance produced by the perpendicular motion of an 
arbitrary spherical boundary along each of the confining walls and then be able to 
invert analytically the Fourier-Bessel transform of this disturbance so that the no- 
slip boundary conditions can be satisfied exactly along both confining walls simul- 
taneously. In this manner, the original mixed co-ordinate, infinite domain boundary- 
value problem is reduced to a much simpler finite domain problem in which only the 
two infinite arrays of unknown coefficients describing the spherical disturbance need 
to be determined so as to satisfy the appropriate boundary conditions on the surface 
of the sphere. The latter problem is readily handled using the matrix-inversion 
boundary collocation technique described in Gluckman et al. (1971). As now demon- 
strated for axisymmetric and fully three-dimensional flows (Ganatos, Pfeffer & 
Weinbaum 1978) the boundary collocation procedure is a dramatic improvement 
over reflexion methods for strongly interacting Stokes flow since the disturbances 
from all boundaries are treated simultaneously rather than in an iterative fashion. 

This paper is presented in four sections. Section 2 contains the formulation for the 
motion of a sphere perpendicular to two plane parallel walls. In 5 3, the accuracy and 
convergence characteristics of the collocation series solution are examined by detailed 
comparison with the exact published results of Brenner (1961) for the motion of a 
sphere perpendicular to a single plane wall. Finally, in 5 4 solutions are presented for 
the drag on a sphere of arbitrary size and position translating perpendicular to two 
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i 
FIGURE 1. Geometry for the axisymmetric flow configuration. 

plane parallel walls and the results compared, where available, with those obtained 
by the method of reflexions. 

2. Mathematical formulation 
We consider the creeping motion of a solid sphere of radius a moving with a constant 

velocity W in a viscous fluid perpendicular to two infinite plane parallel rigid boun- 
daries whose distances from the centre of the sphere are b and c as shown in figure 1. 
The governing equations for the fluid motion are 

pv2v = vp, v.v  = 0, (2.1 a, b )  

where the symbols have their usual meaning. Owing to the axisymmetric nature of 
the flow, it is convenient to introduce the stream function $, satisfying (2.1 b ) ,  which 
is given in cylindrical co-ordinates by 

(2.2a, b )  

Here vp and vz are the radial and axial components of the fluid velocity respectively 
From (2.1 a ) ,  the governing equation satisfied by the stream function is 

Dz(Dz$) = 0, (2.3) 

where D2 is the generalized axisymmetric Stokesian operator 

For the geometry of the problem a t  hand, the stream function is linearly composed 
of two parts, 

$ = $s+$w. (2.5) 

The part kS represents an infinite series containing all the simply separable solutions 
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of (2 .3 )  in spherical co-ordinates which yield a vanishing fluid velocity as r -+ co and 
is given by Happel & Brenner (1973,  p. 136) as 

rn 

Here = cos8 and I,(() is the Gegenbauer function of the first kind of order n and 
degree - 4; r and 8 are spherical co-ordinates measured from the centre of the sphere 
(see figure 1); B, and D,  are unknown constants which will be determined by satisfying 
the no-slip boundary conditions on the surface of the sphere in the presence of the 
confining wa 11s. 

The part $w represents an integral of all the separable solutions of ( 2 . 3 )  in terms of 
cylindrical co-ordinates which produce finite velocities everywhere in the flow field 
and is given by the Fourier-Bessel integral 

$w = 1 [A  (a) eaz + ~ ( a )  e-as + ~ ( a )  az eas 
0 

+ D ( a ) a ~ e - ~ ~ ] p J ~ ( a p ) d a .  (2.7) 

Here A(a),  .. ., D(a)  are unknown functions of the separation variable a and J1 is the 
Bessel function of the first kind of order unity. The integral rather than the infinite 
series form of the solution in cylindrical co-ordinates is required owing to the infinite 
non-periodic extent of Ghe two planar boundaries. By proper choice of the unknown 
functions, the solution (2.7) is capable of exactly cancelling the disturbances produced 
by the sphere along the two confining walls. 

Equation (2.5) is written in mixed co-ordinates; the cylindrical co-ordinate system 
(p,  z )  and spherical co-ordinate system ( r ,  0). In order to differentiate ( 2 . 6 )  and (2 .7 )  
and apply the no-slip boundary conditions along the two walls, it  is necessary to 
relate the spherical co-ordinates to the cylindrical co-ordinate system. Using figure 1 
the co-ordinate transformation is given by 

(2.8a, b )  

Using (2.2), (2.5)-(2.8), the properties of Gegenbauer and Legendre functions and 
the chain rule, the radial and axial velocity components of the flow field are obtained : 

where 

( 2 . 9 ~ )  

(2.9b) 

( 2 . 1 0 ~ )  
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(2.10c) 

E(a,z) = -A(a)eaz+B(a)e-aZ-C(a)  ( l+az)eaz-D(a)  (l-az)e-az, (2.11a) 

F(a , z )  = A(a) ea5+B(a)e-az+C(a)aze"a+D(a)a~e-aZ; (2.1 1 b) 

and Pn are Legendre functions of order n. 
Application of the boundary conditions up = vz = 0 along the two walls results in 

where each of the above integral relations is applied at  z = zi where zi, i = 1,2,  has 
the values - b and c respectively corresponding to each wall. The right-hand sides of 
(2.12) represent the disturbances produced by the sphere and felt on the two planar 
boundaries. These disturbances are functions only of the radial co-ordinate p .  Inspec- 
tion of (2.12) shows that the unknown functions E and F evaluated at the two walls 
are simply Hankel transforms of these disturbances. These equations may be inverted 
to give 

The integrals required in (2.13) are performed analytically as follows. Using the 
polynomial representations of the Gegenbauer and Legendre functions together with 
the result given by Erdelyi et al. (1954, vol. 2, p. 24) 

(2.14) 

Rea > 0, y > 0, - 1  < Rev < 2Rep+Q, 

where K,  is the modified Bessel function of the second kind, one can show by induction 
that 



744 P .  Ganatos, S .  W e i n b a u m  and R. Pfefler 

(2 .15b)  

( 2 . 1 5 ~ )  

( 2 . 1 5 d )  

Direct application of these results to  ( 2 . 1 3 )  gives 

where 

2?:(a,zi) = - Sow tDA(t, zi) J,(at) dt 

1 alq( n-3 [ (Zn - 3 )  alzi 1 - n(n - Z ) ]  e-aizil; (2.17 b )  - - -&) 

( 2 . 1 7 ~ )  

9, j ** (a,zi)  = - 

- - 
an-3 ( 

[ ( 2 n -  3 )  alzil - (n -  1 )  ( n -  311 e-alzil. 
n!  

( 2 . 1 7 d )  

Equations ( 2 . 1 6 )  and ( 2 . 1 7 )  give the E and F functions evaluated a t  the two walls 
in terms of the as yet unknown spherical coefficients B, and D,. To obtain the E and 
F functions a t  any value of z one must determine the unknown functions A(a) ,  . . . , D(a) 
in ( 2 . 1 1 a ,  b ) .  The expressions for E(a,  z j )  and F(a,  zi) obtained from ( 2 . 1 6 )  are sub- 
stituted into ( 2 . 1 1 ) ,  whose right-hand sides are evaluated at  the two walls z = - b ,  C .  
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This gives rise to four linear algebraic equations which may be solved simultaneously 
to yield the unknown functions A(a), . . . , D(a). Once these functions are obtained, 
they are substituted back into (2.11 a, b )  to give the desired expressions for E and F. 
After a considerable amount of algebraic manipulation, one obtains 

E(a, 2 )  = G3(r, 7) E(a,  - b )  - G3(7, a) E(a,  C) - Gi(c, 7) F(a,  - b )  + Gi(7, a) F(a,  c), 
( 2 . 1 8 ~ )  

(2.18b) 
J’(a, 2 )  = - G2(a, 7)  E(a, - b )  + G2(7, a)  E(a ,  C) + G4(r, 7)  F(a,  -b )  - G4(7, a)  F(aj c), 

where 

sinhp sinh r sinh 1’ 
G1,2(p, V) = 47P’ r u  ( 2 . 1 9 ~ )  

cosh u ] ) / 6 .  (2.19b) 
sinh r sinh u sinhp sinhr 

r u  r 
coshp - - - 

The subscripts 1 , 3  and 2 , 4  refer to the plus and minus sign in the right-hand sides of 
(2.19) respectively, p and it are dummy variables, 

6 = 4[sinh2r - r2], (2.20) 

and 
0- = a ( z + b ) ,  7 = a ( 2 - c )  

r = a(b + c ) .  

(2.21a, b )  

(2.21c) 

The expressions for E(a,z) and F(a,z) ,  still in terms of the unknown spherical 
coefficients B, and D,, are substituted into (2.9) to yield the local fluid velocity a t  
any point in the flow. After some rearranging the result is 

m 

n=2  
(2.22a) up = z {B,[BA@, 4 + 9 A ( P ,  211 + Q w J P ,  4 + 9 A ( P ,  411, 

where 

The solution (2.22) satisfies the no-slip boundary conditions all along the two planar 
boundaries for each value of the index n and for any values of the coefficients Bn and 
D,. The single integrals indicated by 42.23) must be performed numerically. In  this 
regard, it should be noted that the expressions for the G, - G4 functions given by 
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(2.19)-(2.21) are prone to large round-off errors as a -+ 0 and should be computed by 
their Taylor series for small values of a. Moreover, for large values of a, equations 
(2.19)-(2.21) producemachine overflows and their asymptotic formulas should be used. 

vp = 0, vz = w, (2.24a, b)  

where W is the velocity with which the sphere is translating perpendicular to the 
walls. The boundary collocation technique developed by Gluckman et al. (1971) for 
applying boundary conditions on the sphere surface in axisymmetric flow is ideally 
suited for this purpose. 

To satisfy the boundary conditions (3.24a, b )  exactly on the surface would require 
the solution of the entire infinite array of unknown coefficients B, and D,. The 
collocation technique satisfies the boundary conditions at  a finite number of discrete 
pointst on the sphere's generating arc and truncates the infinite series into a finite 
one. The two unknown coefficients in each term in ( 2 . 2 2 )  permit one to satisfy the 
exact no-slip boundary at  one discrete point on the sphere. If the no-slip boundary 
conditions are to be satisfied at M points on the generating arc of the sphere, the 
infinite series in (2.22) are truncated after the Mth term. This results in a set of 2M 
simultaneous linear algebraic equations for the 2M B, and D, unknown coefficients 
of the truncated solution which may be solved by any standard matrix reduction 
technique. Once these constants are determined, the solution for the stream function 
(2.5) and the velocity field (2.9) is completely known. 

The force exerted by the fluid on the sphere is shown in Happel & Brenner (1973, 
p. 115) to  be 

The boundary conditions to be satisfied on the surface of the sphere, r = a, are 

r3sin30- a [ - D2' ] r o ~ .  
ar r2sin20 

(2.25) 

Performing the above integration, using (2.5)-( 2.7) and the orthogonality properties 
of the Gegenbauer functions, one obtains the simple relation 

F = 4npD2. (2.26) 

The drag force on the sphere translating perpendicular to the two confining walls can 
alternatively be expressed using the drag correction factor h as 

F = 6npaWh, (2.27) 

where h represents the ratio of the force that the sphere experiences in the presence 
of the confining walls to the force it would experience moving with the same velocity 
through an unbounded quiescent fluid. Equating the two expressions for the drag 
force yields 

A = D2/1.5aW. (2.28) 

3. Solutions for the motion of a sphere perpendicular to a single plane wall 
In this section, the accuracy and convergence characteristics of the collocation 

procedure applied to (2.22) will be determined by comparing solutions obtained using 
the present method with the exact solutions of Brenner (1961) for translation of a 

t Each boundary point actually represents a ring on which the no-slip boundary conditions 
are satisfied owing to the axisymmetric nature of the problem. 
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sphere perpendicular to a single plane wall. In  order to make this comparison, the 
influence of the second wall may be removed from the more general two-wall solution 
given in the previous section by taking the limit as c + m in (2.17) and (2.19). The 
functions required in the solution (2.23) reduce to 

Gl ,2 (~ ,q -+  -m) = F c ~ e - ~ ,  Gl,2(r-+ --m,c~) = 0, ( 3 . l a ,  b) 

G3,4(~ ,q-+  -a) = (lTcT)e-', G3,4(q+ -m,r) = 0; (3 . lc ,  d )  

(3 .2a,  b) 

(3.2c, d )  

There are several schemes which may be used to select the boundary points on the 
sphere on which the no-slip boundary conditions are exactly satisfied. Two such 
schemes will now be examined in detail. 

The most accurate lowest-order truncation solution for the viscous drag force is 
obtained by choosing the boundary point 8 = &. This point is the most advantageous 
since it controls the projected area of the sphere normal to its direction of motion and 
also satisfies the no-slip boundary conditions on the largest ring (8 = constant) 
around the sphere. Unfortunately, an examination of the system of linear algebraic 
equations for the B, and D, coefficients shows that, when the 8 = in point is used, 
the coefficient matrix (2.22) becomes singular. To overcome this difficulty, the point 
8 = &r may be replaced by two closely adjacent points 8 = $ 7 ~  e. The optimum 
value of e is found by obtaining solutions for a single wall at  various sphere-to-wall 
spacings with the boundary conditions being satisfied exactly a t  only the two points 
8 = ?p e ( M  = 2) for a sequence of diminishing values of e. The largest value of e 
for which convergence to a desired accuracy is obtained is then chosen. The results 
of these runs are presented in table 1 .  The bipolar co-ordinate parameter a in Brenner 
(1961) is related to the sphere-wall spacing via a = cosh-l(b/a). Examination of 
table 1 shows that the drag correction factor h converges to five significant digits for 
all spacings considered in the table when e < 0.01". Consequently, E was taken as 
0.01" in the computations which follow. Additional points were selected as mirror- 
image pairs about the plane 8 = in order to preserve the geometric symmetry of 
the boundary about this plane. 

One scheme for spacing these additional points is to divide the half-arc of the 
sphere into equal segments (e.g. for M = 6 use 8 = 30", 60", 89.99", 90.01", 120", 150'). 
This scheme, which was used by Leichtberg, Pfeffer & Weinbaum (1976) for the problem 
of flow past a finite-length chain of spheres a t  the centre-line of a circular cylinder, 
favours the larger rings on which the no-slip boundary conditions are exactly satisfied 
by not specifying a boundary point a t  8 = 0 or 7 ~ .  Using this collocation scheme, 
solutions for h were obtained for various M and a and compared with the exact 
solutions of Brenner (1961). These results are presented in table 2. The table shows 
that the collocation solutions converge monotonically to the exact solution to five sig- 
nificant figures at  all spacings tested. Convergence is very rapid at  the larger spacings 
but becomes slow when the sphere is located immediately adjacent to the wall. 

Another possible scheme for spacing the boundary points would be to include a 
boundary point a t  8 = 0 (and 7~). The role of this point should be of increasing import- 
ance as the gap between the sphere and the wall is made very small. Leichtberg, 

B;(a, c -+ m) = 9Z(a,  c + 00) = 0, 

BZ*(a, c -+ 00) = BE*(., c + 00) = 0. 
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a = 0.5 a = 1.0 a = 2.0 a = 3.0 
E b/a  = 1.13 b/a = 1-54 b/a = 3.16 b/a  = 10.1 

10" - 3.5614 - 2.5251 - 1.4039 - 1.1249 
lo - 3.4885 - 2.5000 - 1.4030 - 1.1249 
0.1" - 3.4877 - 2'4998 - 1.4030 - 1.1249 
0.01" - 3.4817 - 2.4997 - 1.4030 - 1.1249 
0.001 - 3.4811 - 2.4997 - 1.4030 - 1.1249 

TABLE 1. Drag correction factor for a sphere translating perpendicular 
t o  a single plane wall, M = 2. Convergence tests for optimum E .  

M 
2 
4 
6 
8 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
Exact 

a = 0.5 
b / a  = 1.13 
- 3.4877 
- 6.3569 
- 1,8347 
- 8.6423 
- 9.0189 
-9.1693 
-9.2237 
- 9.2424 
- 9.2486 
- 9.2507 
- 9.2514 
- 9.2516 
- 9.251 I 
- 9.2518 
- 9.2618 
- 9.2518 

a = 1.0 
b / a  = 1.54 
- 2.4997 
- 2.9842 
- 3.0309 
- 3.0356 
- 3.0360 
- 3.0361 
- 3.0361 
- 
- 
- 
- 
- 
- 
- 
- 

- 3.0361 

a = 1.5 
b / a  = 2.35 
- 1.7128 
- 1.8359 
- 1.8314 
- 1.8375 
- 1.8375 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

- 1.8375 

a = 2.0 
b / a  = 3-16 
- 1.4030 
- 1.4128 
- 1.4129 
- 1.4129 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

- 1.4129 

a = 2.5 
b / a  = 6-13 
- 1.2202 
- 1.2220 
- 1.2220 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

- 1.2220 

TABLE 2. Convergence of h for a sphere translating perpendicular to 
a single plane wall at various sphere-to-wall spacings. 

a = 3.0 
b/a  = 10.1 
- 1.1249 
- 1.1252 
- 1,1252 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

- 1.1252 

Weinbaum, Pfeffer & Gluckman (1976) used this collocation scheme to obtain solutions 
in the near-collision limit for two adjacent spheres in a chain. Unfortunately, the 
coefficient matrix (2.22) again becomes singular if the points 6' = 0 or 7~ are used. To 
overcome this problem a new set of trial runs was made with 6' = E , + T  & E ,  71 - E ( M  = 4) 
for various values of E .  The results of these runs are shown in table 3. Again, it  was 
found that h converges to five significant digits for all spacings'tested when E < 0.01". 
Additional boundary points were chosen in pairs as before (e.g. for M = 6 use 6' = 0.01", 
45", 89-99", 90.01", 135", 179.99"). The results of this collocation scheme for various 
M are compared to the exact single-wall solutions at  various spacings in table 4. 
Examination of table 4 reveals oscillatory convergence of h to the exact solution to 
five significant digits for d l  spacings tested. Comparison between tables 2 and 4 
shows that convergence of the latter collocation scheme is as rapid or more rapid than 
the previous one a t  all spacings. Even at a = 0.5 (b/a = 1.13) only fourteen points 
are required to obtain the drag to an accuracy of 0-005 yo. A t  larger spacings, conver- 
gence is even more rapid. Accuracy to four significant figures is achieved with only 
eight points at  a = 1 (b/a = 1.54) and four points at  a = 2 @/a = 3.76). 

In light of the above numerical tests, it  appears that the second collocation scheme 
is the more efficient one and consequently will be used for the two-wall solutions to 
be presented in the next section. 
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a = 0.5 a = 1.0 a = 2.0 u = 3-0 
8 b/a = 1-13 b/a = 1.54 b/a = 3.76 b/a = 10.1 

10" - 20.434 - 3.1592 - 1.4131 - 1.1252 
lo -33.195 - 3.1948 - 1.4132 - 1.1252 
0.l0 - 33.407 -3.1952 - 1.4132 - 1.1252 
0.Ol0 - 33.409 - 3.1952 - 1.4132 - 1.1252 
O.0Ol0 - 33.409 - 3.1952 - 1.4132 - 1.1252 

TABLE 3. Drag correction factor for a sphere translating perpendicular 
to a single plane wall, M = 4. Convergence tests for optimum 6. 

u = 3.0 u = 0.5 a = 1.0 u = 1.5 a = 2.0 u = 2.5 
M b/a = 1.13 b/a = 1.54 b/a = 2.35 b/a = 3.76 b/a = 6.13 b/a = 10.1 

4 
6 
8 

10 
12 
14 
16 
18 
20 
22 
24 
26 

- 33.409 
- 14.902 
- 9.8323 
- 9.3260 
- 9.2603 
-9.2513 
- 9.251 1 
- 9.2515 
-9.2517 
-9.251'7 
-9.2518 
- 9.2518 

-3.1952 
- 3.0399 
- 3.0360 
- 3.0361 
- 3.0361 
- 

- 1.8428 
- 1.8374 
- 1.8375 
- 1.8376 

- 1.4132 
- 1.4129 
- 1.4129 

Exact - 9.2518 - 3.0361 - 1.8375 - 1.4129 - 1.2220 - 1.1252 

TABLE 4. Convergence of h for a sphere translating perpendicular to a single plane wall 
at various sphere-to-wall spacings with boundary points placed near 8 = 0, n. 

4. Solutions for the motion of a sphere perpendicular to two plane 
parallel walls 

In the previous section, solutions for the motion of a sphere perpendicular to a 
single plane wall were presented, tested for Convergence and compared to exact 
published results. In  this section, solutions will be presented for the motion of a 
sphere perpendicular to two plane parallel walls and compared with those obtained 
by the method of reflexions technique (Ho & Leal 1974). 

Before presenting these results we shall first examine how the rate of convergence 
is affected by the introduction of the second planar boundary. The spherical solution 
(2.6) is now required to cancel the disturbances simultaneously produced by the pre- 
sence of both walls on the surface of the sphere. It is therefore expected that more 
terms in the series (2.6) will be required to achieve convergence especially at close 
spacings where the disturbances are strongest. Table 5 shows the rate of convergence 
as a function of sphere-to-wall spacing b/a and sphere position s = b /d  where d = b + c. 
The column s = 0 corresponds to the single-wall solution while s = 0.5 corresponds 
to the case where each wall is equidistant from the centre of the sphere. Each configu- 
ration is solved a number of times with increasing M until convergence is achieved to 
four significant figures. The starting value of M for a given case in table 5 is the 
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b/a M 

1.1 16 
18 
20 
22 

1.5 8 
10 
12 

s = 0.1 

- 11.46 
- 11.46 
- 11.46 
- 11.46 

- 3.206 
- 3.206 
- 3.206 

s = 0.2 

- 11.50 
- 11.50 
- 11.50 
- 11.50 

- 3.223 
- 3.223 
- 3.223 

s = 0.25 

-11'56 
- 11.56 
- 11.56 
- 11.56 

- 3.253 
- 3.253 
- 3.253 

s = 0.3 

- 11.69 
- 11.69 
- 11.69 
- 11.69 

-3.313 
- 3.313 
-3,313 

s = 0.4 

- 12.48 
- 12.48 
- 12'48 
- 12.48 

- 3.619 
- 3.619 
-3.619 

s = 0.5 

- 21.00 
- 21.02 
-21.03 
- 21.03 

- 4.779 
- 4.780 
- 4'780 

2.0 6 -2.126 -2.135 -2.151 -2-182 -22-335 -2.789 
8 - 2.126 - 2.135 - 2.151 - 2.182 - 2.335 - 2.789 

5.0 4 - 1.285 - 1.287 - 1.290 - 1.296 - 1.325 - 1.397 
6 - 1.285 - 1.287 - 1.290 - 1.296 - 1.325 - 1.397 

TABLE 5. Convergence of two-wall solutions a t  various sphere positions 
s and sphere-to-wall spacings b/a.  

30.0 I I I I 

20.0 - 

b - = 1.1 
a 

I t  

10.0 - 

-A 

1.0 1 
0 0.1 0.2 0.3 0.4 0.5 

FIGURE 2. Comparison between solutions for the hydrodynamic interaction parameter h for a 
spheie translating perpendicular to one or two plane parallel walls. ---, collocation (present 
study) ; - - -, Ho & Leal (1974), method of reflexions: 0 ,  Brenner (1961) exact. 

S 

minimum value of M in table 4 which gives convergence to four significant figures. 
Examination of table 5 shows that introduction of the second wall has a surprisingly 
small adverse effect on the rate of convergence. The slowest rate of convergence is 
found a t  s = 0.5, b/a = 1.1, where the second wall is closest to the sphere and only four 
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FIGURE 3. Drag on a sphere translating perpendicular to two plane parallel walls. 
--, d /  2a = constant ; - - - , b / a  = constant. 

additional points are required on the sphere to achieve four-digit accuracy for A. 
For b/a  2 2, no additional points are required. 

Figure 2 shows a comparison of the ‘exact’ collocation solutions obtained in the 
present study with the first-order reflexion solutions obtained by Ho & Leal (1974) 
for the drag on a sphere translating perpendicular to two plane parallel walls. Also 
shown are the exact solutions obtained by Brenner (1961) for the motion of a sphere 
perpendicular to a single plane wall. The converged collocation solutions are in 
excellent agreement with the exact single-wall solutions of Brenner (1961) a t  all 
values of bla.  On the other hand, there is considerable error in the solutions obtained 
by the method of reflexions over the entire range of s. For example, a t  s = 0.5 and 
b/a = 1.1 the method of reflexions underestimates the drag on the sphere by a full 
order of magnitude. A t  b/a  = 2 theerror is as much as 40per cent. Itisonlyfor spacings 
of b/a  = 5 or greater that the method of reflexions begins togivemeaningful results. 

Figure 3 shows converged colIocation solutions for the drag on a sphere translating 
perpendicular to two walls for several representative values of wall spacing to sphere 
diameter.? For a given wall-to-wall spacing, the sphere experiences minimum drag 
when it is located midway between the two walls and a drag that becomes infinite as 
the sphere approaches either of the boundaries. For 0 < s < 0-25 the presence of the 

t Tables of numerical values of the drag force shown in figure 3 converged to  four significant 
figures may be found in Ganatos (1979). 
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0 

-0.2 

t z = c = 3.9 

-0.4 

z 

-06 

-0.8 

-1.0 
I I I I I 

1.0 0.8 0.6 0.4 0.2 0 
P 

z -1 

- 1.025 

- 1.05 

-1.1 - 
0.2 0.1 0 

P 

FIGURE 4. Velocity field induced by the translation of a sphere perpendicular to  
two plane walls; d / 2 a  = 2.5, B = 0.22. 

second wall has an insignificant effect on the drag of the sphere as demonstrated by 
the small slope of the curves b/a = constant (dashed lines). 

Figure 4 shows a plot of the velocity field obtained using (2.22) for the case d/2a = 2.5, 
s = 0.22. The velocity vectors shown with arrowheads have been drawn to the same 
scale in all three views and show the magnitude and direction of the fluid motion. 
For cases where the magnitude of the velocity is too small to be visible on the scale 
shown, the direction of the fluid motion is shown by a straight line without an arrow- 
head at  the indicated point. Figure 4a shows ad overview of the flow field as the 
sphere is moving away from the nearer wall. The shape of the large eddy induced by 
the motion of the sphere is distorted by the presence of the confining walls. Figures 
4 ( b ,  G )  show a more detailed description of the flow field in the region 0 < p < 1,  
- 1 < z < 0 and 0 < p < 0-2, - 1.1 < z < - 1 respectively. In this region the flow is 
required to make a 90" bend and the magnitude of the fluid velocity may even exceed 
the sphere velocity. Also shown in figure 4 ( b )  is the location of the boundary points 
used on the surface of the sphere for this particular run (M = 20). The no-slip boundary 
conditions are satisfied exceedingly well along the entire surface of the sphere. 

The calculations for the results presented in this paper were performed on an 
AMDAHL470IV6 computer. The bulk of the computation time was used in the 
numerical evaluation of the integrals (2.23). Actual running times to determine the 
drag and the B, and D, velocity coefficients in (2.22) for one configuration were found 
to be +M2 s at  most spacings. A t  the largest sphere-to-wall spacings, computation 
times increased by about a factor of three due to the slower convergence of the integrals. 



The creeping motion of a sphere. Part 1 753 

The authors wish to thank the National Science Foundation for supporting this 
research under grant ENG 75-19243 and The City University of New York Computer 
Center for the use of their facilities. The above work has been performed in partial 
fulfilment of the requirements for the Ph.D. degree of P. Ganatos from The School of 
Engineering of The City College of The City University of New York. 

REFERENCES 

ARMINSKI, L., WEINBAUM, S. & PFEFFER, R. 1980 J .  Theor. Biol. (in press). 
BRENNER, H. 1961 Chem. Engng Sci. 16, 242. 
ERDELYI, A., MAGNUS, W., OBERHETTINGER, F. & TRICOMI, F. G. 1954 Tables of Integral 

GANATOS, P.  1979 Ph.D. dissertation, City University of New York. 

GANATOS, P., PFEFFER, R.  & WEINBAUM, S. 1980 J .  Fluid Mech. 99, 755-783. 
GLUCKMAN, M. J., PFEFFER, R. & WEINBAUM, S. 1971 J .  Fluid Mech. 50, 705. 
HALOW, J. S. &WILLS, G. B. 1970 A.1.Ch.E. J .  16, 281. 
HAPPEL, J. & BRENNER, H. 1973 Low Reynolds Number Hydrodynamics, 2nd edn. Noordhoff. 
Ho, B. P.  & LEAL, L. G. 1974 J .  Fluid Mech. 65, 365. 
LEICHTBERG, S., PFEFFER, R. & WEINBAUM, S. 1976 Int .  J .  MuEtiphme Flow 3, 147. 
LEICHTBERG, S., WEINBAUM, S., PFEFFER, R. & GLUCKMAN, M. J. 1976 Phil. Trams. Roy. SOC. 

LORENTZ, H. A. 1907 Abhand. Theor. Phys. 1, 23. 
WEINBAUM, S. & CARO, C. G. 1976 J .  Fluid Meeh. 74, 611. 

Transforms, vol. 2. McGraw-Hill. 

GANATOS, P., PFEFFER, R.  & WEINBAUM, s. 1978 J .  FZ&d Mech. 84, 79. 

A 282, 585. 


